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ABSTRACT !

We argue that most natural objects have a part structure that we can recover from
image data and thus use as the basis for “general-purpose” recognition. We describe a
“parts” representation that is fairly general purpose, despite having only a small number of
parameters. Having this expressive power captured by a small number of parameters allows
us to approach the problem of recovering an object’s part structure by use of minimal length
encoding. We present several examples of recovering part structure using various types of
range imagery to show that the recovery procedure is robust. '

1 THE PROBLEM

To have a general-purpose machine vision capability, we must be able to recognize things.
This involves computing a sufficiently canonical description of the objects in our environ-
ment that we can match these recovered descriptions to stored descriptions. Moreover, we
must be able to learn new object descriptions; thus we must be able to compute a canonical
description of an object without much reliance on previously-learned descriptions.

The fact that people can recognize ob jects and learn their descriptions strongly supports
the view that there is some “natural,” stable, method for structuring object descriptions,
and that people are somehow recovering this “natural” structure from imagery and using
it to support recognition and learning. We believe that this natural structuring of object
descriptions is closely related to people’s naive perceptual notion that objects have “parts.”
We will, therefore, argue that most natural objects have a part structure that we can recover
from image data, and that is exactly this structure that provides the computational basis
for both recognition and learning.

This is not to say that lower level image features do not contribute to recognition. We
argue, however, that the way in which they do so is by helping to define an object’s part
structure. It is clear, for instance, that most preattentive image features — e.g., T-junctions,
parallel lines, and the like — strongly constrain part structure [1-6]. Moreover, it seems to
us that image features alone cannot generally support recognition. There is, for instance, a
medical literature concerning patients whose spatial and feature-recognition abilities remain

1This research was made possible by National Science Foundation grant no. DCR-83-12766, by
Defense Advanced Research Projects Agency contract no. MDA903-86-C-0084, and by a grant from
the Systems Development Foundation. I wish to especially thank Marty Fischler, Yvan Leclerc, and
Bob Bolles for their comments, help, and insight.
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Figure 1: Our view of the process of vision: World Structure — Image Features +— Part
Representation. General-purpose recognition requires an isomorphic relationship between
the viewed object’s true 3-D part structure and the structure of our representation of it.

intact, but who are unable to recognize objects except in very special, highly constraining
situations [7].

Thus our view of the vision process is illustrated in Figure 1; it starts with image features
and proceeds by computing a representation that is isomorphic to both the object’s 3-D
metric properties (e.g., shape) and to the 3-D part structure of the object. We see this
part-by-part isomorphism between internal representational structure and objective causal
structure as being the basic requirement for general-purpose recognition; only if we can
obtain such a part-by-part correspondence can we match between the stored and newly-
computed representations.

It is difficult to accurately define this notion of “part structure” We know, for instance,
that it is related to rigidity, and that things that move separately must be separate parts.
Similarly, part structure is related to object dynamics. In mechanical design, for instance,
complex objects are standardly broken down into “parts” in order to analyze their dynamic
and kinematic properties. Finally, however, we must fall back on the fact that people
seem to have strong, consistent intuitions about “part structure.” The particulars of the
representation we employ in this paper were originally determined by use of psychological
evidence about people’s notions of part structure [8].

Although it is difficult to define the details of such a “part structure” theory, it is
relatively easy lay out requirements that such a theory must satisfy if it is to be useful for
recognition. This leads us to a list of requirements that is similar to — but in some critical
ways different from -— that compiled by Marr and Nishihara [9]:



(1) The representation must have descriptive adequacy, i.e., it must be sufficient to describe
the image data in a natural manner, one that captures the structural distinctions needed
by subsequent reasoning processes. However it does not seem necessary, or even desirable,
that a part representation account for every detail of the image data. People, for instance,
often do not notice small differences between generally similar photographs. It seems
sufficient for our part representation to be able to represent the data at a “cartoon-like”
level of detail, i.e., to capture {roughly) the amount of detailed shape information that
people typically remember. We can later employ a separate surface representation, such
as a thin-plate surface model! [10] or a fractal surface model [11], in order to describe
the [relatively small] differences between our part representation and the actual detailed
surface shape.

{2) The recovered description must be stable, so that we can use it to match against stored
descriptions. There seem to be three important types of stability:

¢ Stability with respect to scale: We require not only insensitivity to small changes in
scale, but the also ability to “summarize” small details appropriately, e.g., given a
large image of a person to separately describe ears, nose, etc., but that given a very
small image of a person to describe the head as a single entity. This is similar to the
Marr and Nishihara suggestions [9] concerning the need for a hierarchical, multiscale
representation.

e Stability with respect to image noise: The ability to produce similar descriptions from
both accurate, clean data and from noisy, or even silhouette, data.

o Stability with respect to configuration: The ability to produce similar descriptions as
the viewer’s position changes, and as objects articulate. Because recognition requires
matching stored descriptions against recovered ones, the ability to produce a stable
part-structure segmentation is critical to the success of our approach. An unsegmented
surface representation, for instance, generally can not support such matching because
even small variations in surface shape or viewing position typically changes the number
of spline knots, polygons, or surface patclies, and thus prevents symbolic matching.?

In short, these requirements demand a representation that is general-purpose enough to
describe the situation in a natural manner (i.e., one that captures distinctions needed by
later reasoning processes), and a recovery process that produces sufficiently canonical de-
scriptions that we can match the recovered description to our stored models.

The plan of this paper, then, will be to briefly present a theory and representation of
part structure, describe a method for computing that part structure from image data, and
then evaluate the combination of recovery method and representation against the above
criteria.

?When using a surface Tepresentation matching between two surface representations is almost always
accomplished by using each of the surface representations to render a synthetic image, and then calculating
the pixel-by-pixel RMS error between these two synthetic images. Thus in a certain sense an unsegmented
surface representation is actually worse than raw images for object matching and recognition!



2 REPRESENTATION

Many modern psychologists [4-6], as well as the psychologists of the classic Gestalt move-
ment, have argued that we conceive of the world in terms of parts, and that the first stages
of human perception are primarily concerned with structuring the image into these “parts.”
This part-structure is seen as forming the building blocks upon which we build the rest of
our perceptual interpretation.

One reason people may favor such part descriptions is that they offer considerable po-
tential for reasoning tasks. It seems, for instance, that people employ such descriptions in
commonsense reasoning, learning, and analogical reasoning [12-14]. This may be because
such descriptions refer to the world in something like “natural kind” terms: they speak
qualitatively of whole forms and of relations between parts of objects, rather than of local
surface patches or of particular instances of objects.

Moreover, recent research in graphics, biology; and physics has provided us with good
reason to believe that it may be possible to objectively describe our world by means of a
_ few, commonly-occurring types of formative processes [15-18]; i.e., that our world can be
modeled as a relatively small set of generic processes — bending, twisting, interpenetration
— that occur again and again, with the apparent complexity of our environment being
produced from this limited vocabulary by compounding these basic forms in myriad different
combinations.

Following in this tradition, we have explored [8] how people describe shape using both
the tools of protocol analysis, and the psychophysical method devised by Triesman. One
concise characterization of our results is that we found our subjects describing 3-D shape
procedurally: by describing how one would make the shape using a malleable material such
as clay, using a few generic forming actions [19]. As an example, our subjects might have
described the back of a chair is a rounded, flattened cube, that has been slightly cupped
or bent to accommodate the human form. The bottom of the chair might be described
as a similar object, but rotated 90°. By “oring” these two parts together with elongated
rectangular primitives describing the chair legs, they would obtain a complete description
of the chair. This description is illustrated in Figure 2(c).

In our experiment it did not seem that people tried to describe the exact surface shape.
Rather, they appeared to be trying to describe the general, “global” structure of the form,
with the detailed surface shape being described (where necessary) as variations from the
overall shape. For instance, a person’s forearm would be described in two parts: globally
as a tapered cylinder, and locally by small deviations from the global form which describe
the detailed musculature. Thus this sort of parts-level description should be thought of as
being in addition to, for example, thin-plate or fractal surface models. It is the frame upon
which hangs detailed descriptions of surface shape.

2.1 Our Representation of Part Structure

Inspired by how people seem to describe shape, we have adopted a representation that
describes shape in a similar manner, e.g., how one would create a particular shape by
forming and combining lumps of clay. The most primitive notion in this representation is
analogous to a “lump of clay,” a modeling primitive that may be deformed and shaped, but
which is intended to correspond roughly to our naive perceptual riotion of “a part.” For this

4
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Figure 2: (a) A sampling of the basic forms allowed, (b) deformations of these forms, (c) a
chair formed from Boolean combinations of appropriately deformed superquadrics.




basic modeling element we use a parameterized family of shapes known as a superquadrics
[20,21], invented by Danish designer Peit Hein, which are described (adopting the notation
Cy = cosn, 5, = sinw) by the following equation:

. Cf,l C:)z
X(pw)y=| Case (1)
Sa

where X (n,w) is a three-dimensional vector that sweeps out a surface parameterized in
latitude n and longitude w, with the surface’s shape controlled by the parameters ¢; and ;.
This family of functions includes cubes, cylinders, spheres, diamonds and pyramidal shapes
as well as the round-edged shapes intermediate between these standard shapes. Some of
these shapes are illustrated in Figure 2(a). Superquadrics are, therefore, a superset of the
constructive solid geometery (CSG) modeling primitives currently in common use.

These basic “lumps of clay” are used as prototypes that are then deformed by linear
stretching and tapering, or quadratic bending, and then combined using Boolean operations
to form new, complex shapes.? Qur representation, therefore, is both a generalization of the
CSG approach and a modification of the generalized cylinders approach; we are combining
a restricted class of generalized cylinders using Boolean operations.

We have constructed a 3-D modeling system called “SuperSketch” that employs this
shape representation. This real-time, interactive modeling system is implemented on the
Symbolics 3600, and allows users to interactively create “lumps,” change their square-
ness/roundness, stretch, bend, and taper them, and finally to combine them using Boolean
operations. This system was used to make the images in this paper, and, by writing to the
author, is available free to colleges and universities.

The specification of shape, orientation, position, and the various deformations requires
a total for 14 parameters.?. This compares favorably with the nine parameters needed to
describe intensity, first, and second derivatives at a single point; the nine parameters needed
simply to describe the position, orientation, and size of a rectangular solid; or the hundreds
of parameters that might be needed to describe a generalized cylinder.

We have found that this representational system has a surprising generative power that
allows the creation of a wide variety of form, such as is illustrated by Figure 2. As a
consequence of the concise nature of this shape language, we have found that even complex
objects and scenes can typically be modeled using a relatively small number of parameters,
as is illustrated by the models shown in Figure 3. These modeling results have lead us to
believe that this representation provides a concise “natural” level of description, of exactly
the sort needed to support recognition.

2.1.1 Local versus global representation of shape

As discussed above, this parameterized shape vocabulary is not intended to describe the
surface shape in full detail. Rather, our lump-of-clay specification is a coarse-grain descrip-

#See the Appendix for more mathematical details of the representation.

*Three for position, three for orientation, three for size, two for squareness/roundness along the various
axes, two for bending and one for tapering. We restrict bending to being along at most two axes, one of
which is the longest axis, and tapering to only the longest axis. These restrictions come from our finding that
additional degrees of freedom were almost never used when people constrncted models nsing SuperSketch.



Figure 3: (a) An industrial casting, (b) Its SuperSketch model (approximately 300 parame-
ters; construction time: 23 minutes), (¢) A SuperSketch model of two people (approximately
1000 parameters; construction time: approximately 4 hours)
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Figure 4: Global shape is important in integrating positional information. (a) Measuring
distance between a point and the center of a cube, {b) a point and a sphere, and {c) a point
and a cylinder.

tion of the general structure of the form. Having captured a first-order approximation to
the overall form by use of our shape language, we can now describe the details of the surface
shape as small deviations normal to the superquadric’s surface.

There are three major advantages to describing shape by use of a combination of a global
parameterized model together with a point-by-point surface model. First, separating our
description into global and local representations nicely supports the differing requirements of
various reasoning tasks. For instance, in calculating an object’s dynamics or kinematics we
need only know that the object is approximately cylindrical, while determining a gripping
point requires knowing about local deviations from the overall cylindrical shape. Second,
such a global-local representation allows a much more concise encoding of the detailed
surface shape, because the larger-scale variations in the form are succinctly encoded by our
simple parameterized shape vocabulary.

And finally, having a global description is necessary to correctly integrate positional
information when measurement errors are normal to the surface rather than parallel to the
viewer, as is illustrated by Figure 4. Standardly such fitting is accomplished by projecting
data points along the shape’s field of surface normals, calculating the point of intersection,
and minimize the sum of Euclidian Ly distances between data point and intersection.

An computationally simpler approach to such fitting is to tailor the distance metric to the
problem. For instance, the problem of fitting a cube to a set of position measurements can
be easily easily accomplished by simply minimizing the sum of the Lo {“maximum”) norm
distances between the measured points and the center of the cube, with no intersection
calculation or projection being required. Similarly fitting points to a cylinder is easily
accomplished using an orthogonal combination of the L., and L; norms. The general form
of this relationship between shape and distance metric is the following. If we define a shape
by

D = (((8a) + (bl + (82) " | )



with® D = 1 then D is the computationally simplest distance metric (i.e., the L, X Lg norm)
when measurement error is assumed normal to the surface. In particular, the distance metric
associated with a particular superquadric shape is precisely it’s standard inside-outside
function.® See, for example, reference [22].

3 PART RECOVERY: MINIMAL-LENGTH ENCODING

Reliable, bottom-up learning of object descriptions is perhaps the most difficult task faced
by a vision system. Certain characteristics of range data, however, make the problem much
simpler and so we will use range imagery exclusively in this paper.

The primary simplifying characteristic is the fact that range imagery allows simple
separation of figure from ground: one “chops out” a cube of data, locates the ground plane,
and the remaining data is “figure.” The technique we are currently using to separate figures
from ground is described in [23]; briefly, is a matter of fitting a “rubber sheet” model to the
surface observed in the range data and then finding those places where the surface changes
elevation rapidly enough to “tear” a hole in the sheet.

Having identified patches of image data as comprising a single figure, and having adopted
a particular representation, we can now pose the problem of learning an object description
as the process of using our shape vocabulary to find the “best” account of the data. That
is, we can define the learning process as one of optimizing our description over our shape
vocabulary relative to some goodness-of-fit criterion.

3.1 Our Optimization Criterion: Minimal-Length Encoding

We shall employ encoding length as our means of evaluating an explanation of the image
data, in other words, our goodness-of-fit criterion is the cost (in bits) of encoding the image
data by use of our 3-D shape vocabulary and a simple noise mode]l. The total cost of
encoding some image data will be calculated as being the sum of several subterms; these
are the cost of specifying: (a) the parts description itself, (b) the “noise” in the data (small
deviations from the value predicted by the parts description), (c) errors of commission
(points predicted that don’t occur in the data), and (d) errors of omission (image points
missed by the parts description). Thus the “best” explanation of some image data we will
take to be that encoding (in terms of part models and noise) that has the minimum sum of
costs (a) through (d).

There are two motivations for adopting the minimal-length encoding approach. First,
finding the minimal-length encoding of a scene is equivalent to finding the maximum a
posteriori (MAP) explanation of the scene, where the assumed encoding costs are inversely
proportional to the log of the prior probabilities. Thus by finding a minimal-length encoding
of image data using our vocabulary, we actually recover the MAP estimate of the both the
large-scale image structure, which we will mode] by use of our parts vocabulary, and the .
small-scale image structure, which we will model as point-wise independent shot noise in
the range sensor’s distance measurement.

5A sphere has o = # =2, a cube @ = § = o0, and a cylinder o = 2,8 = oc.
SFurther, when we extend our basic shapes to include bent, stretched or tapered forms the inside-cutside
function remains the appropriate distance metric.




Second, if we know the generative structure of our scene — if we know about the
processes that create the world we are observing — then the minimal-length encoding of the
scene in terms of those processes is the simplest explanation of the scene’s causal history.
This technique is exactly what geologists or paleontologists use when reconstructing the
folding of rock strata or development of a family of animal species. Such application of
minimal-length encoding is the formal version of “Occam’s Razor:” the principle that the
simplest explanation is the best explanation 7.

Our protocol analysis research indicates that people tend to think of the world in terms
of formative processes that are analogous to sculpting in clay. If the world really is formed
of processes analogous to our vocabulary of construction and deformation, then by use of
minimal-length encoding we can use the image data to infer a description that can be related
to the scene’s causal structure, and thus to its functional significance.

It is important to understand that that the formative processes in the scene do not
have to actually be clay sculpting in order to determine causal structure: They only have
to be isomorphic to the clay-sculpting operations. For instance, the growth of a plant’s
stem is isomorphic to the stretching and tapering of a cylindrical primitive, it’s branching
is isomorphic to the Boolean combination of cylindrical primitives, and it’s curving toward
the sun is isomorphic to our bending operation. Thus if we can recover a description of that
plant in terms of our shape vocabulary, our description will be isomorphic to the “true”
explanation of the plant’s growth. As a result, the distinctions our description makes will
in fact be distinctions with functional significance.

Thus the most important requirement when employing a minimal-length encoding ap-
proach is to use a shape vocabulary that is isomorphic to the actual 3-D structure of the
scene. If we choose our vocabulary correctly, then a minimal-length encoding using that
vocabulary will provide us with 2 meaningful segmentation of the data. This fact provided
the motivation for our choice of a shape vocabulary based upon psychological evidence
concerning people’s notions about the intrinsic structure of 3-D objects [4-6,8,12-14,19].

The primary difficulty in computing a minimal-length encoding is that it requires global
optimization of the cost function and, unfortunately, there are no efficient, general-purpose
global optimization techniques for such nonlinear problems. We may, however, take advan-
tage of the special properties of this particular problem in order to achieve an adequate
solution.

3.2 Decomposability of Our Optimization Problem

The first property we may take advantage of is that we may decompose of our search for
the best explanation into two phases: a local phase and a subsequent global phase. We may
do this because the part models in our shape vocabulary are compact, with surfaces that
are opaque to the sensor.

In the minimal-length encoding framework we assume that that the scene is in fact
generated by our shape vocabulary, and that noise was then added to the image data. Thus

"That is, one can prove that if a body of data is generated by a vocabulary ¥ with parameter settings Pi,
then the minimal-length encoding of that data (using V') will recover the P; — given sufficient resolution,
noise-free data, and modulo ambiguities in the vocabulary. Thus one can formally define the intuition that
the “simplest explanation” is in fact the correct one.
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locality of effect in the minimal-length encoding follows from the locality of our assumed
generation process: When we add a new part to a scene, it does not affect the description
or appearance of parts beyond it’s imaged boundaries. Thus, similarly, changes that are
far enough from a particular image point can not affect the description at that point. For
instance, if the largest element in our shape vocabulary has a projected radius of 50 pixels,
we do not have to look much farther than 50 pixels to find the part model that provides
the best description of the image region surrounding that point.

Qur optimization procedure, therefore, will first determine the best localized encoding
using a single SuperSketch part descriptor, taking into account the cost of “noise” errors
and of errors of commission. The cost of errors of omission can not be evaluated locally,
because image data left unaccounted for by one part descriptor may later be accounted for
by some other part. These localized “best” encodings will then subsequently be combined
into a global minimal-length encoding.

In making use of this locality property, we have implicitly ruled out the use of global
descriptors such as symmetry or repetition {descriptors that specify distribution of the
parts) as participants in the very first level of perceptual organization. We are asserting
that such meta-level descriptors must operate upon already-discovered local structure; that
is, first you find the range of possible local explanations and then you search among all of
the local descriptions for the best global explanation, taking into account properties such
as symmetry, parallelism, and repetition.

3.3 Finding the Localized Minimal-Length Encoding

We are still left with the difficult problem of finding the best fit of a single SuperSketch
part model to a region of image data. To solve this problem we will make use of the fact
that this fitting problem is generically well-behaved: It has a broadly-tuned, well-defined,
and stable solution.

Such non-linear optimization problems are frequent in vision. Typically solution is
attempted by use of either a variant on gradient ascent, or by use of simulated annealing [24].
Unfortunately, all gradient techniques fail when local maxima are present, and simulated
annealing is too slow to be practical.®

Recently several authors have suggested using continuation methods (e.g., scale space)
to solve global optimization problems [25]. But except for very special cases, where the
continuation makes the problem convex, these methods are still foiled by local maxima.
Alternatively, simulated annealing with an accelerated cooling schedule has been suggested
as a method of global optimization, however use of such a schedule means that convergence
is no longer assured.’

We observe, however, that despite these grim facts most researchers routinely use gra-
dient ascent to find reasonable solutions [26]. This is because most physically-motivated
systems are generically well-behaved, that is, if we examine the equations that describe
a physical system we find that over most of the parameter space the system varies both

8To achieve convergence simulated annealing requires maintaining statistical equilibrium; this requirement
means that global search of the entire state space is often a more efficient strategy!

?Use of such accelerated cooling schedules results in an algorithm that is best described as gradient
ascent/descent with Poisson noise added to the energy function; the addition of noise makes the algorithm
somewhat more resistant to being trapped by shallow local maxima, but in no way assures success.

11




smoothly and slowly. It is this generic behavior that allows gradient ascent techniques to
work as well as they do: Most of the time physical systems are convex in a broad neighbor-
hood surrounding the global maximum. Thus it is often the case that if we have a rough
estimate of the correct parameter settings then we can use gradient ascent to find the global
maximum.

3.3.1 Massively parailel search

We can exploit this generic behavior to devise a global optimization procedure; an example
will illustrate our point nicely. Let us suppose that we have a system of equations for which
we must find the global maximum, and that this system of equations has six variables or
parameters. Let us further suppose that the convex region surrounding the global maxi-
mum spans roughly 1/3 of the range of each of these parameters. Thus the convex region
surrounding the global maximum occupies roughly 1/729* of the total area of the entire
parameter space.
An example of such a problem is minimizing:

i=10
f()_{.) = H a;cos(1.5mz; + 6;), 0<g <1 (3)

i=1

with respect to X =< z; >, where the a; and 8; are unknown constants. This is clearly a
problem that will be impossible for gradient ascent, and difficult for simulated annealing,.

However if we sample the function at each of 6° = 46,656 points evenly spaced through-
out our parameter space, then we will be guaranteed of sampling at (at least) one point
where each of the parameters are within about 8% of best parameter value, and well within
the convex region surrounding the global maximum. Further, we are guarenteed that that
point will have a value that is at least half the value of the global maximum value. Conse-
quently, only points with values more than half the maximum value discovered ¢an possibly
be near the global maximum, and so if we start gradient ascent searches from this subset of
points we will be guarenteed of finding the global maximum. For typical values of the g;,
there will be only a very few points that are candidates for being near the global maximum.

The advantages of this approach emerge when using a massively parallel computer such
as a Connection Machine. With such a machine we can in one parallel operation prune away
most of the parameter space, leaving only a small set of points which are potentially near
to the global maximum. Moreover, in cases where the global maximum value is more than
three times the value of the other local maxima, our one parallel operation will produce a
single point which is guaranteed to lie near the global maximum. °

Figure 5 illustrates such a case. Figure 5(a) shows a function to be maximized; note
the many local maxima that will foil gradient ascent techniques. Figure 5(b) shows the
same function thresholded at one-third of the maximum value; it is clear that only points
near the global maximum have greater values. Thus we can use a coarse sampling of the
function shown in Figure 5(a) to find — in one parallel operation — a point near the global
. maximum.

1%There may also be points adjacent to this point and within the covex region surrounding the global
maximum, but not points distant from it in the parameter space.

12
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Figure 5: (a) A highly nonlinear fitting function with many local maxima, (b) the same
function thresholded at one-third of the maximum value. Having a distinct, broad global
maximum (such as in this example) can allow us to use coarse search to find a global
optimum in a single parallel operation. ‘
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Getting away from the specifics of these examples, if we know that the two-thirds-power
diameter of the convex region surrounding the global maximum is of width ¢; in each of
the parameters z;, and that the range of these parameters is r;, then we require H,-Ef
sampling points. Thus the complexity of our procedure grows as fast as the size of the state
space so that as the number of variables increases, the number of starting points increases
dramatically. This limits practical application of this approach to problems with less than -
ten or twelve parameters.

3.3.2 Fitting SuperSketch models

The problem at hand — that of fitting SuperSketch parts to range data — is also susceptible
to this approach: We can show that there are less than 2% local maxima, and that our
goodness-of-fit measure is a smooth, well-behaved function of the model parameters (The
attached Appendix presents this argument; see also Solina and Bajcsy’s work [26] on fitting
of SuperSketch-like modeling primitives). Thus we might expect that by sampling each
parameter sufficiently densely we could guarentee that at least one sample point was both
within the convex region surrounding the global maximum.

The intuition behind this argument is illustrated by Figure 6. Figure 6(a) illustrates
the rendering of a range image of a banana-like shape, and then Figure 6(b) illustrates
comparing the hypothesized range values to the measured range values in order to compute
our “goodness-of-fit” measure. Figure 6(c) shows how the value of this measure varies as
each of the part’s parameters are varied. At the center of each graph in Figure 6(c) is the
exactly matching parameter value; it can be seen that our “goodness of fit” measure varies
slowly as we move away from the correct parameter value.

Figure 6, therefore, illustrates that near the optimal solution the problem of finding
the best fit is broadly convex. We have used the expanding grid method described in the
Appendix to ascertain that the convex region surrounding the correct parameter setting
is always quite broad: For instance, length, width, or depth can be varied by up to 50%
before the goodness-of-fit value falls to two-thirds of its original value. In contrast, the fit
is relatively sensitive to orientation: Rotation angles can be varied by only 10 or 15 degrees
before dropping to two-thirds of the optimal value.

We therefore adopted the strategy of evaluating our goodness-of-fit functional at roughly
216 points in parameter space, sampling most parameters at three different values (e.g.,
object widths of 10, 20, and 40 inches) and some critical parameters, such as orientation,
more frequently (e.g., every 22.5 degrees) !!. Thus no point in the parameter space differs
from one of our sample points by more than an average of 12% along each parameter.

We have examined a large number of test cases to verify that this sampling rate is
sufficient to ensure finding the global maximum. We found that for a typical test case a
single sample point would provide a fit more than twice as good as any other, so that it
could immediately be taken as the being in the neighborhood of the global maximum. In
none of our test cases were there more than four points whose goodness-of-fit value was
within a factor of two of the best value discovered, and in such cases each of these points

'In our sampling we restrict bending to occur along at most two axes, one of which must be the longest
axis, and we have typically not included tapering (it seems to make a difference only on large forms), except
when using a reduced sampling in orientation.
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provided an intuitively reasonable fit to the range data.

Thus in most of our test cases we could uniquely identify a parameter setting which
was in the neighborhood of the global maximum using only one parallel evaluation 1? of
our goodness-of-fit functional. In the remaining test examples this single parallel evaluation
was sufficient to identify a small number of good parameter settings, one of which was in
the neighborhood of the global maximum. _

We have confidence, therefore, that our optimization procedure will find a part model
that is close to the optimal minimal-length encoding of that region of image data (when
using a single part model). By repeating this optimization at each (coarsely quantized)
image position, we produce a small set of part models each of which provides the best
region-by-region encoding of the image data. We can then search among combinations
drawn from' this set of regional best-fits to find a small set of parts that provides the best
overall explanation of the image data, i.e., an approximately minimal-length encoding of
the image data in terms of our modeling primitives.

3.4 Avoiding Errors Due to Occlusions

One of the key elements assuring the success of this approach is evaluation of the localized
goodness-of-fit functional in a manner that is insensitive to occlusions and that, in addi-
tion, takes into account all the information we have about edge placement, surface shape,
perspective effects, and sensor characteristics. The procedure we use is to

(1) Construct a 3-D SuperSketch part with the hypothesized parameters (e.g., orientation,
length, squareness). .

(2) Render that part by using known sensor characteristics, thereby constructing a range
image that correctly accounts for the effects of perspective, surface shape, and other
known variables that affect image appearance. By using a rendering technique that
includes a full camera and sensor model, we make explicit all of the edge, surface,
perspective, and other relations that are normally implicit in our model parameters.
Steps (1) and (2) are illustrated by Figure 6(a)

(3) Histogram all of the point-by-point differences in depth between the rendered part and
the image data. This produces a histogram with “buckets” at each possible offset
between the hypothesized part’s depth and the actual depth, so that the value in each
bucket is the number of pixels at that particular offset. While doing this, we also keep
track of the number of pixels ¢ that fall off the figure entirely (when the “figure” of
interest can be separated from the surrounding “ground,” as is generally possible with
range data). By using a RANSAC-style [27] histogramming procedure, we allow large
portions of the figure to be occluded without disturbing the matching process. This is
illustrated by Figure 6(b).

(4) From this histogram we estimate the position p of the largest peak. This peak is the most
frequently occuring distance between the hypothesized and the measured surfaces; the
number of counts in this peak is the area (in pixels) of the hypothesized part’s surface
that would match the image data if the part were moved in depth by a distance p.
By using buckets of width o, therefore, we can employ this histogramming technique

12].e., 2'® independent evaluations evenly distributed across the parameter space.
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Figure 6: Finding the best fitting part descriptor. (a) We take a 3-D SuperSketch part
with the hypothesized parameters (e.g., orientation, length, squareness), render it using
known sensor characteristics to produce a predicted image R*(z,y). (b) We then histogram
point-by-point differences (i.e., R*(z,y) — R(z,y)) between the R* and the range data
R(z,y); the size of the largest peak is used to calculate our goodness of fit measure. (c)
The fit between these range data and a 3-D part model as the parameters of the 3-D part
are varied; the correct fit occurs at the center of each graph.
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to determine the number of pixels u that would match to within +¢ at the optimum
depth positioning of the hypothesized part.
(5) Compute the value of the goodness-of-fit functional I' for this set of parameters:

T =p— e (4)

In our examples we have used ¢ = A = 4; the procedure seems to be relatively insen-
sitive to the value of these parameters.
The measure g gives us the number of pixels accounted for by this hypothesized part to
within +1/2¢, and the measure € gives us the number of pixels that are errors of commission.
As a consequence the quantity

s=—kKkg+(8—x)L (5)

estimates the amount of savings (in bits) gained by encoding 8-bit range data using the
hypothesized part parameters, where xg is the bit cost for describing the hypothesized part
(assumed constant for all parameter settings), , is log(o), the average cost of encoding the
difference between the range data and the hypothesized surface (data noise errors), and A
is set to the cost of errors of commission divided by (8 — &,).

Thus we can determine the localized minimal-length encoding by maximizing I' over all
of our model parameters. Having accomplislied this at each image point, we can then use
these localized encodings to compute a global minimal-length encoding.

3.5 Finding the Global Minimal-Length Encoding

To determine the global minimal-length encoding, we choose from among these localized
minimal encodings a subset that best describes the image. That is, we must find the set of
part models that minimizes the combined cost of part description, noise errors, and errors
of both commission and omission. This task is difficult because the localized part models
are not independent; they overlap and obscure each, so that encoding cost for the set is not
closely related to the sum of the individual encoding costs.

In general, then, we must consider n-ary relationships in order to find the global minimal-
length encoding. Binary relationships, however, constitute almost all of the part-to-part
interactions in calculating the minimal-length encoding, because it is relatively rare for
three or more parts to overlap across a significant area. Thus if we can correctly account
for binary relationships we can produce an encoding whose length is close to that of the
global minimal-length encoding. Luckily, accounting for binary relationships turns out to
be relatively easy.

We have four types of cost to consider in computing the minimal-length encoding. The
first is the part description cost, which is a constant number of bits for each hypothesized
part descriptor. Thus there are no part-to-part interactions for this portion of the encoding
cost. The second is the noise cost, the cost of encoding a pixel value relative to the part’s
surface. Here we have binary interactions, because the same pixel can be covered by more
than one part. Similarly, in calculating the cost of errors of commission we must take binary
relationships into account, because two parts can overlap the same pixel.

To account for these binary relationships we form what we call area matrices. We let
M., be a matrix whose #** diagonal element is the number of pixels covered by the ** part.

17



The (i,7)*,7 # 7 elements of this matrix are minus one-half the number of pixels covered
by both the i** and j** parts. A similar matrix, M, is formed for the pixels which are errors
of commission.

Let us describe a particular set of models by the vector X, which has a one in the 38
slot if model 7 is a member of the set, and zero otherwise. To calculate the total cost of
encoding image data by use of the set of part models X we evaluate

E(X) = 50X X7 4+ s AMoXT + 1, XMXT + k3(N — XM, XT) (6)

"where kg is the cost of describing one part model, k,; is the cost of encoding a pixel to
within +1/2¢, & is the cost of encoding an error of commission, &3 is the cost of encoding
an error of omission; and N is the number of non-zero pixels in the image.

By minimizing Equation(6) we can thus approximate the minimal-length encoding of
the image data using our shape vocabulary.

Equation(6) is a quadratic form in X; the minimum value of this equation can be found
by gradient ascent as long as the combined matrix

M = ol 4 (Kl - K-3)MB 4 xa M, (7)

is negative definite. This condition obtains whenever the part models do not overlap each
other greatly, i.e., whenever our initial local encodings are reasonable. '

The major difficulty in minimizing this equation is that the values of X must be either
zero or one. In the following examples we have used a simple iterative, best-first search
algorithm that is similar to the Newton-Raphson iterative solution technique. This min-
imization problem can also be converted to a linear integer programming problem, and
global solution obtained by a method similar t6 the Simplex algorithm. We are currently
investigating this linear approach.

By minimizing Equation (6) we obtain a set of part models that furnishes a reasonable
approximation to the minimal-length encoding of the image data in terms of our part repre-
sentation. We have found, however, that it is useful to perform a final step of optimization
on all of the parameters of this final set of parts. We accomplish this final optimization
by means of a numerical gradient descent algorithm that renders all the hypothesized part
models together (thus completely accounting for occlusion relations) and computes the en-
coding cost; the algorithm then changes one of the part’s parameters and ascertains whether
the cost is improved. If improvement does indeed occur, the change is accepted.

3.6 Practical Considerations

Straightforward implementation of the above operations requires about 10° operations per
image region. The number of operations required can be reduced considerably by pruning
the search space during the search, in 2 manner similar to that used by Bolles [28], Brooks
[29], Goad [30], Faugeras et al [31], or Grimson and Lozano-Perez [32] in their model-based
vision systems.

In cur current implementation, this pruning is accomplished by keeping track of the
current n best fits (largest I' values) within an image region and by using their T' values to
(1) abort evaluations of ' as soon as it becomes clear that the eventual value will be smaller
than any of the current n largest I' values (e.g., when, even if all of the remaining pixels
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match exactly, I' will still be smaller than the current n best I' values), (2) discard any
parameter setting that a priori cannot generate a value of I' that is larger than one of the
current n best I' values, and (3) order the search so that the above pruning techniques will
be maximally effective (e.g., search over the parameter settings with the largest potential
I’ values before searching over other parameter settings).

By taking advantage of these and other efficiency expedients, the examples shown here
have required an average of about 10'? operations each, roughly two and one-half hours of
CPU time on a Symbolics 3600. For industrial applications, in which bending and tapering
are not typical, the search space is smaller and thus the required computation time can
be significantly reduced. Because of the inherent parallelism of the technique (thousands
of identical searches within each region) a full global search is expected to take only a few
seconds per image on 2 large, paralle] computer such as a Connection Machine.

4 PART RECOVERY RESULTS

The examples below all use range imagery: one synthetic example, one structured-light
example, and three time-of-flight laser range finder examples. One characteristic of range
data is that it is generally easy to obtain a rough “figure/ground” separation [23]; we have
made use of that ability. Some simple preprocessing was used in the case of the laser range-
finder data, to remove mixed-range pixels and the inherent ambiguity-interval problems of
those data [33).

4.1 Synthetic Data

The first example uses simulated range data, with approximately six-bit resolution. The
purpose of this example is to demonstrate the performance of the algorithm independent of
special data characteristics, and to demonstrate the ability of the technique to recover part
structure in the face of problems of scale and configuration.

Figure 7(a) shows a SuperSketch mode] (here, and in succeeding figures, we will show
side views of SuperSketch models as insets placed in the lower-right-hand corner of the frame
surrounding the model); Figure 7(b) shows a range image generated from this model. This
is a fairly accurate model] of the articulated human form; as such, it illustrates the necessity
for a part-structure representation of the overall shape: without such a representation,
we would have to store descriptions of every possible positioning of the figure in order to
recognize it as it moved about. Figure 7(c) shows the initial explanation of the image data,
found by our local, parallel search technique applied to points sampled along the figure’s
2-D skeleton, '3 followed by our procedure to select an optimal subset from among the
regionally-best-fitting part models.

The most striking aspect of this initial shape description is that, although not perfect, it
seems sufficiently similar to the original, generating description that we can use it to index
into a database of known forms and to recognize the figure as human.

Figure 7(d) shows the final recovered model, the result of gradient descent from Figure
7(c). Figure 7(e) shows “blow-up” views of the original model and of the recovered model.

3 Originally the skeleton was found by hand simulation of a grassfire technique; later we confirmed that
the points we used could have been found automatically.
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Figure 7: (a) A SuperSketch model, (b) a range image generated from this model, (¢) initial
explanation of the image data, (d) final recovered model, (e) “blow-up” views of the original
model and of the recovered model. Note the similarily of part structure and part-by-part
paramelers.
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Note the similarity of part structure and part-by-part parameters.

Perhaps the major question to be asked about this procedure for recovering part struc-
ture is whether or not the recovery is stable, because stability in structuring the image data
is the primary property required for reliable recognition. Some of the particulars of this
example are illustrative in this regard.

Note, for instance, that the feet are described by bent primitives that account for both
ankle and foot, although in the final model the “ankle” part is not visible, having been
occluded by the “calf.” Such fitting of a bent primitive to two unbent parts is also observed
in the right arm — again, the upper part is occluded in this case by the “forearm.” Although
these assignments of part structure are not ideal they are entirely plausible segmentations
when given only one view. It seems that such occasional merging of connected primitives
may be unavoidable; thus in order to have reliable recognition we must have both possible
descriptions — as one bent primitive and as two straight but connected primitives — in
our stored model. '

A more interesting case occurs in the recovery of descriptions for the hands and head, for
although both head and hands are actually quite complex shapes they are recovered as being
a single, undifferentiated part. These examples show the effect of scale; when the image
features become smaller than the range of scales searched, there is a sort of “summarizing”
effect as a fit is attempted to the overall, composite form. Marr and Nishihara [9] pointed
out the need for this type of “summarizing;” they proposed that for reliable recognition
we must have a multiscale representation in our stored model. In this example we can see
how having a multiscale representation, with descriptions for each distinct scale of parts
structure, might be combined with this recovery procedure to successfully address some of
the difficult problems associated with scale,

4.2 Industrial Castings

Figure 8(a) shows a range image of jumbled industrial castings produced by light strip-
ing. This image is not geometrically accurate; i.e., perpendicular surfaces do not appear
perpendicular. The dynamic range of the image is about six bits. Figure 8(b) shows the
initial explanation for the image data, found by parallel search at points along the figure’s
2-D skeleton, followed by selection of the optimal subset. Again, it appears that the part
structure structure has been recovered with sufficient accuracy to allow identification of the
castings and recovery of their approximate location and orientation.

Figure 8(c) shows the result of gradient descent from Figure 8(b). Figure 8(d) shows a
comparison of the original range data and a range image produced by the recovered model
of Figure 8(¢); the point of this comparison is that the simple (approximately 70 parameter)
description that was finally recovered retains most of the data’s original metric information.
Such a good fit shows that we have achieved an accurate encoding of the data, and that
our model vocabulary has descriptive adequacy for this data.

4.3 OQOutdoor Vision

The remaining examples make use of data from the ERIM Autonomous Land Vehicte time-
of-flight laser range finder. This rangefinder collects a 256 by 64 pixel image in 0.4 seconds,
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Figure 8: (a) A range image of jumbled industrial castings produced by light striping, (b)
initial explanation of the image data, (c) the final recovered model, (d) comparison of the
original range data and a range image produced by the final recovered model.
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Figure 9: (a) A range image of the upper part of a person (for practical purposes this is
merely a silhouette), (b) the initial explanation of the image data; note that the correct part
structure of his left (upraised) arm, head, and right arm are clearly present, (¢) the final
recovered model, (d) a comparison of the original range data and a range image produced
by the final recovered model.

23



‘sketch of scene

skateh of acens

D

sketch of seene

y=2 View of scene

E

Figure 10: (a) A range image of a gate by the side of the road (our figure/ground procedure
has, unintentionally, included a bush near the left-most gatepost as part of the figure),
(b) the final recovered model, (c) a range image produced by the recovered model, (d) the
result of “prettifying” (b) using the domain knowledge that nearly horizontal/vertical parts
are likely to be horizontal/vertical, (¢) a comparison of the recovered model of (d) with a
SuperSketch mode! of the gate that was constructed by hand.
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Figure 11: (a) A range image of a few roadside bushes, (b) final recovered model, (c) a range
image produced by the recovered model, (d) the original range data, with points closer than
the median distance removed, (e) a range image produced by the recovered model again
with points closer than the median distance removed, showing the model’s close match to
the range data’s internal structure, (f) a range image produced by adding a fractal surface
model to the parts representation.
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and has a useful range of about 128 feet and an advertised accuracy of about five percent.
It is has an unusual imaging geometry that is similar to that of a very-wide-angle lens.

Figure 9(a) shows a range image of the upper part of a person, taken with this sensor.
This example is interesting, especially in comparison to the synthetic data example above,
in that the amount of depth information within the figure is negligible; this is for practical
purposes merely a silhouette. Figure 9(b) shows the initial explanation of the image data;
Figure 9(c) shows the result of gradient descent from Figure 9(b).

Perhaps the most important point of this example is that a reasonable 3-D part structure
can be recovered even from what is essentially only silhouette data; the left (upraised) arm,
head, and right arm are clearly present in the recovered description. Figure 9(d) shows a
comparison of the original range data and a range image produced by the recovered model

of Figure 9(c). This comparison shows that the simple (70 parameter) recovered description

retains most of the data’s original metric information, again demonstrating that we have
achieved an accurate encoding of the image data and that our vocabulary has descriptive
adequacy for this data.

Figure 10(a) shows a range image of a gate by the side of the road. Again, the data
contain little more information than a silhouette; the linear elements of this figure average
two pixels across. Note that our figure/ground procedure has unintentionally included a

" bush near the left-most gatepost as part of the figure. The most interesting aspect of this

example is the small size of the imaged features; this data thus provides a severe test of
noise sensitivity.

Figure 10(b) shows the initial explanation of the image data. Again, a reasonable part-
structure description is recovered, although (because the data include a bush as well as
the gatepost) the left gatepost is recovered as a large “block” shape. Figure 10(c) shows a
comparison of the original range data and a range image produced by the recovered model
of Figure 10(b); again, the recovered description retains most of the data’s original metric
information, demonstrating that we have achieved an accurate encoding of the image data.

One of the advantages of having a high-level description like this parts language is that it
provides good “hooks” for applying domain-specific knowledge. This is illustrated by Figure
10(d), which shows the result of “prettifying” Figure 10(b) using the domain knowledge that
nearly horizontal/vertical parts are likely to be horizontal/vertical. Figure 10(e) shows a
comparison of the recovered description of Figure 10(d) with a SuperSketch model of the
gate that was constructed by hand. The thickening of the posts and bars in the recovered
gate can be largely attributed to preprocessing intended to remove mixed-range pixels.

Figure 11(2) shows a range image of a few roadside bushes. The most important aspect
of this example is that it is not an example in which there is an obvious part structure;
nor is it an example with smooth surfaces. This data, therefore, allows us to examine some
of the limits of our technique’s descriptive adequacy, its ability to produce a reasonable
encoding of even very noisy data, and its ability to produce stable segmentations. Figure
11(b) shows the initial explanation of the image data, as found by iterative, best-first search
among the best fits at points in a 10 by 10 grid covering the image data.

Figure 11(c) shows a range image produced by the recovered description of Figure 9(b);
the outlines of Figures 11(a) and (c) can be seen to be similar, thus showing that the
recovered description (in this example a total of 56 parameters) retains most of the data’s
original metric information. Figure 11(d) shows a comparison of the original range data,
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with points closer than the median distance removed, and a range image produced by the
recovered description of Figure 11(b), again with points closer than the median distance
removed. This comparison shows that the internal structure of the recovered description
closely matches that of the measured range data.

This example shows that even very complex shapes can be usefully “summarized” by
our shape vocabulary; thus supporting our dual claims of descriptive adequacy and stable
part structure recovery. We can improve the accuracy of the learned model somewhat by
modeling the discrepancies between the recovered part structure and the range data by
using a fractal surface model [11,34]. The result of adding a fractal surface model to the
recovered part model is shown in Figure 11(e). An even better description of the differences
between part model and image data could be obtained by using a particle model [35] of the
bush’s branches and leaves.

5 SUMMARY

We have used the approach of minimal-length encoding to address the problem of recovering
volumetric object descriptions from range data. This technique provides us with the “Oc-
cam’s Razor” simplest explanation of the data, an explanation that can be shown to be the
maximum a posteriori (MAP) estimate of the scene’s structure in terms of our volumetric
shape vocabulary.

When using this approach it is critical to use a shape vocabulary that “naturally”
describes the scene’s true 3-D structure. We have used various avenues of psychological
‘evidence to settle on a representation that closely mimics people’s notions about object’s
intrinsic part structure [4-6,8,12-14,19]. By use of the SuperSketch modeling system we
have been able to show that this volumetric shape representation is reasonably general
purpose despite having only a small number of parameters. Further, we note the fact that
we could in each example obtain an accurate fit to real range data lends support for the
shape vocabulary’s descriptive adequacy.

In order to obtain a solution to the minimal-length encoding problem, we developed a
two-stage optimization procedure that first addressed the local encoding problem, and then
the global encoding problem.

The first stage capitalized on the fact that our shape models have only a small number
of parameters, allowing us to use a2 massively parallel search to determine points in the
model’s parameter space that potentially provide the optimum local encoding of the data.
This technique has the advantage that it can reliably obtain a global solution for certain
difficult non-linear optimization problems, such as the problem addressed here, by use of 2
small number of massively parallel operations. Further, this parallel search technique has
considerable plausibility as a model of biological information processing.

The second stage of our encoding procedure chooses among these local encodings to
obtain an approximation to the global minimal-length encoding. This problem may be
formulated as a quadratic integer programming problem, and gradient descent techniques
used to search for an optimum solution. Alternatively, the second stage may be converted
to a linear integer programming problem and the exact solution obtained, an approach we
are currently investigating.
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From our experiments we believe that this parallel-search minimal-length encoding tech-
nique is robust. The examples presented here, for instance, demonstrate stability with
respect to both noise and scale. Thus our approach seems to be able to provide a good
encoding of the data’s metric properties by use of a small number of massively parallel
operations followed by a straightforward quadratic optimization.

More important than obtaining a good encoding of the data’s metric properties, of
course, is obtaining an accurate segmentation of the object into it’s part structure, for that
is what we must use for indexing into our memory of stored models. Whether a model that
accurately accounts for the metric properties also accounts for the part structure depends
upon whether our shape vocabulary actually captures a robust aspect of the object’s true
3-D structure, and whether that structure is conserved under projection.

. It is our opinion that the part structure descriptions we have been able to recover are in

fact adequate to support recognition. For instance, Figure 7(e) makes it seem quite likely
that we could to compare our recovered part description of the man image (Figure 7(d))
with a stored description of the object category “a man” (Figure 7(a)) and determine that
the recovered description is in fact an image of a man. Further, it seems likely that we
could determine that the recovered description of Figure 9(c) is at least consistent with our
man model. Whether or not our current system is in fact sufficiently robust to generally
support such recognition is, of course, open to experimental verification, and consequently
is the principal direction of our future research. :
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Appendix

We can show that, ignoring the (2,y,z) position parameters, that there are less than
28 local maxima when searching for the optimum fit between our SuperSketch models and
range image data. We accomplish this by means of the following polynomial description of
~ the set of SuperSketch models. ‘
We start by defining a three-sphere of radius r = ag:

23+ 93 + 28 = 1 | (8)
We then define translation
z1=(a1+29) wy=(a2+m) z1=(az+z) . (9)
and three-space rotation
] Tl
y2 | = R(ag,as,06) | 3 (10)
Z2 21

where R(as,as,as) is a rotation matrix corresponding to the three Euler angles a4,as, and
ag.

We then introduce a series of transformations that correspond to the deformations al-
lowed in SuperSketch. First we define stretching,

T3z =4arz: Y3 = agyz 23 = Gg22 (11)

then bending (here we will use only bending around the z-axis),

z4 = 1073 + an¥i + 23 (12)
and finally tapering,
T =14 a;22;. (13)
Thus the equation
24yt =t (14)

defines the set of ellipsoidal SupérSketch models, where the variables a; correspond to the
parameters of our SuperSketch models. From this equation we can derive a single-valued
function

zz = f(z3,¥3,4:) ' (15)

that describes the visible face of a SuperSketch models with parameters < a; >.
We now consider the minimization problem

€= IrginZ:IIZJ ~ f(z5,95,a)|] (16)
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that is, find the set of a; that best describe a set of range data < z;,%;,2; >. This
minimization equation is 2 fourth-order polynomial in the first eight ** ;, and a second-
. order polynomial in the remaining «;.
Simple calculation shows that, ignoring the positional parameters, there are at most
3% = 243 local maxima in this optimization. Because not all cross terms of the a; are
typically present, however, there are usually fewer maxima than this simple calculation
would suggest. We also observe that position, orientation, length, and breadth may need
to be sampled fairly densely, as they potentially have three maxima apiece, whereas the
remaining parameters are quadratic and thus can be established by gradient ascent.
We can extend this argument to squarish SuperSketch models by modifying the original
equation to read:
| 3 +y3 + 2 = (17)

The use of the fourth-order power changes the surface from a uniformly curving one to a
surface with “corners.” Although the order of the equation is now changed, there are no
additional distinct roots, and so the number of local maxima is unchanged.

Perhaps the main problem with implementing an optimization procedure based on this
analysis is that we don’t know the position of the maxima or their characteristics, so that we
don’t know how to sample the parameter space. One approach is to evenly tile the parameter
space with starting points separated by an amount smaller than the diameter of the convex
region surrounding the global optimum. Although such a uniform grid will inevitably employ
many more starting points than are actually necessary, it is an approach that requires
relatively little knowledge about the global behavior of the optimization function; one only
needs to know about the region immediately adjacent to the global optimum.

This approach still requires an estimate of the diameter of the convex region surrounding
the global optimum. One method we have developed to empirically determine the correct
sampling density we call the expanding grid method. We start with a massive underestimate
of the diameter, and build a grid of that density across the entire parameter space.

We then test the sufficiency of this estimate by checking to see that gradient ascent from
each sampled point can reach at least one neighboring point in the parameter space. If our
test succeeds, then we increase the interpoint distance, continuing until we reach a point
where our test fails. Assuming that there are no maxima whose diameter is less than our
original (under)estimate, then this procedure gives us a useful estimate of the diameter of
the convex regions surrounding the global maximum.

The final step is to determine the maximum ratio of goodness-of-fit values that occurs
within every global maximum. In our experiments with fitting SuperSketch models to range
data, there was always at least a factor of three between the optimal fit and other points
still within the convex region surrounding the global maximum (discounting certain intrinsic
parameter ambiguities). This ratio was then used to determine which points cannot possibly
be within the convex region surrounding the global maximum.

' Although the Euler angles do not appear as linear elements of the rotation matrix, it is only necessary
to obtain three independent elements of the rotation matrix in order to solve for them; these independent
elements are therefore the relevant rotation parameters, and they are linear elements of the rotation matrix.
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